

MGPBD: A Multigrid Accelerated Global XPBD Solver

Chunlei Li^{1*}, Peng Yu^{1*}, Tiantian Liu², Siyuan Yu³, Yuting Xiao¹, Shuai Li^{1†}, Aimin Hao¹, Yang Gao^{1†}, Qinping Zhao¹

¹State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, China

²Taichi Graphics, China.

³Zenustech, China.

*Both authors contributed equally to this research

[†]corresponding authors: lishuai@buaa.edu.cn, gaoyangvr@buaa.edu.cn

<https://github.com/chunleili/mgpbd>

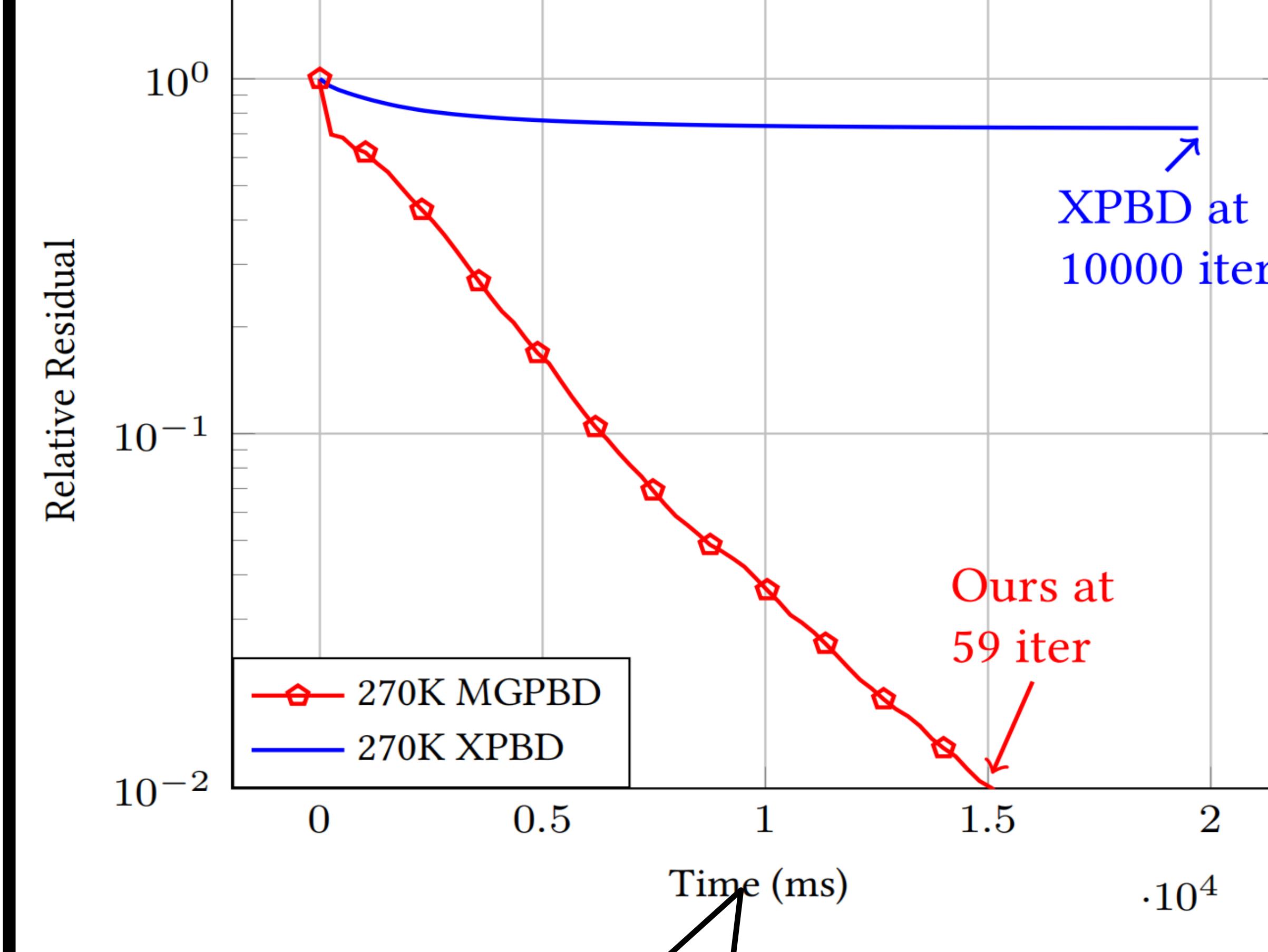
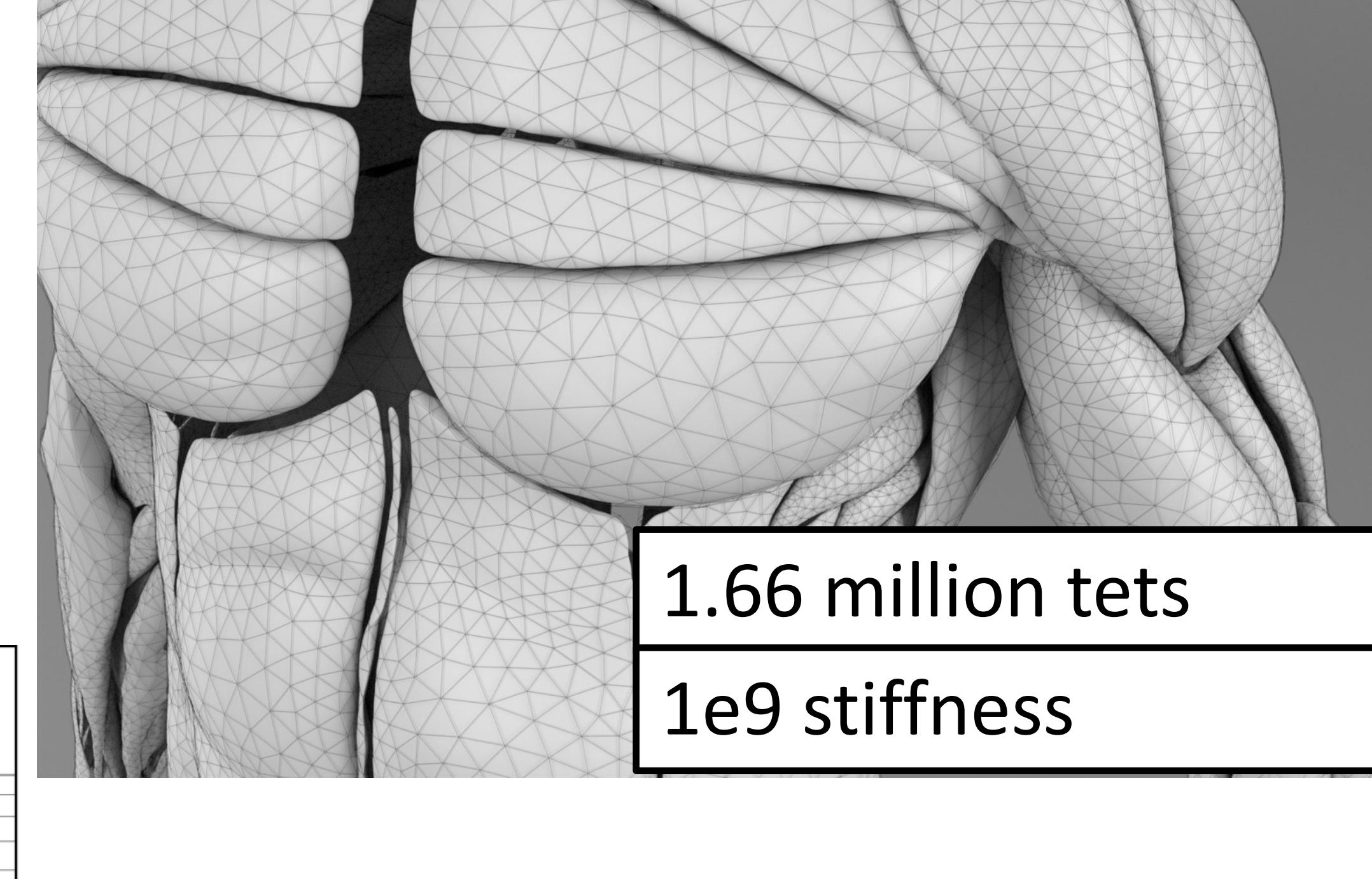
<https://arxiv.org/abs/2505.13390>

Code & Paper

Motivation & Background

Muscle Simulation

High resolution: 1.66 million tets
High stiffness: hard like car tires
($G=10\text{MPa}$)



XPBD[1]: 1) Universal
2) Simple 3) Fast

One step of PBD/XPBD

1. Move under inertia
2. Solve **constraints**
3. Update velocities

XPBD[1]	SAP[3]	Newton	Ours
Dual space	Dual Space	Primal Space	Dual Space
Local system	Global system	Global system	Global system
Non-linear GS/Jacobi	Direct Solver	All types of linear solvers	AMG

XPBD does NOT converge even using 10,000 iterations!

- The higher mesh **resolution**, the more difficult
- The higher **stiffness**, the more difficult

Why XPBD's linear system has **stalling** issue?

Method

Dual Space Global System

For simplicity $G = \nabla C(x) \in R^{m \times 3n}$

$$\text{KKT system } \begin{bmatrix} M & G^T \\ G & \tilde{\alpha} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \end{bmatrix} = - \begin{bmatrix} 0 \\ C + \tilde{\alpha} \lambda \end{bmatrix} \Leftrightarrow \begin{bmatrix} 3n & m & m \\ M & G^T & -\tilde{\alpha} \\ m & G & -\tilde{\alpha} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ r_d \end{bmatrix}$$

Take Shur complement, get our **system** to solve

$$(GM^{-1}G^T + \tilde{\alpha})\Delta\lambda = -C - \tilde{\alpha}\lambda$$

A Dual System: DOF is $\Delta\lambda$

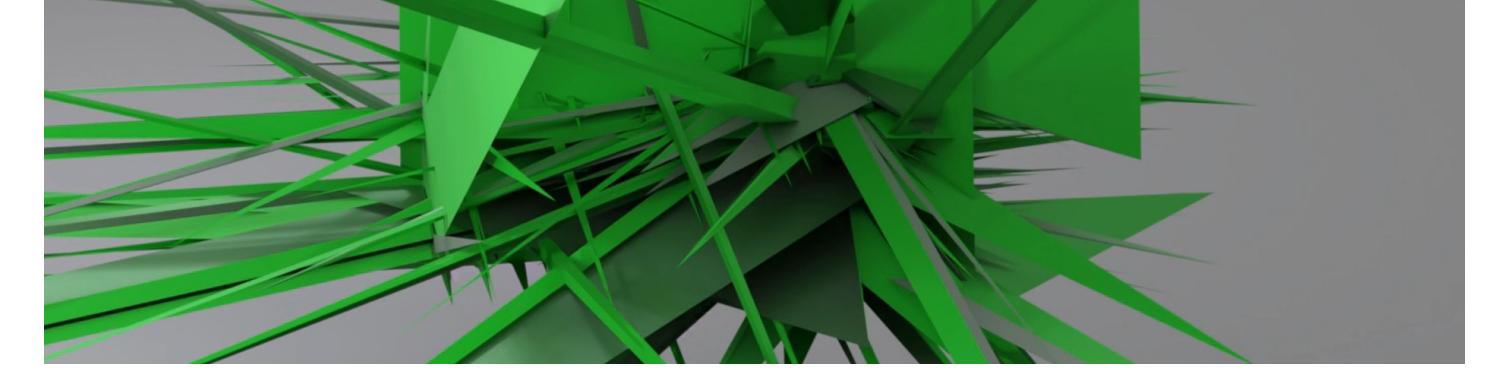
$$\Delta\lambda_j = b_j/A_{jj} \text{ for } j = 1, 2, \dots, m$$

XPBD: Non-linear GS/Jacobi

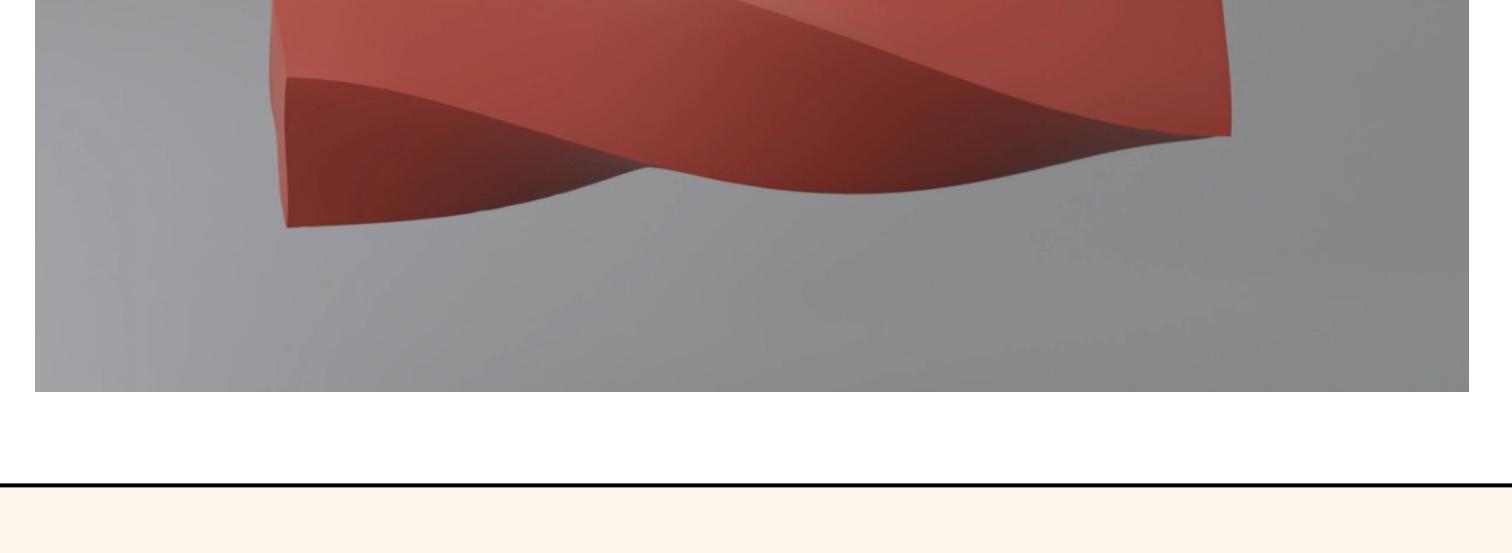
Local System: Ignores the off-diag terms
One Sweep: one sweep to solve the linear system.

	Dual Space	Primal Space[2]
DOF	$\Delta\lambda$	Δx
Size	$m \times m$	$3n \times 3n$
System	$GM^{-1}G^T + \alpha/\Delta t^2$	$G^T\alpha^{-1}G + M/\Delta t^2$
Pros	Stable at high stiffness ratio	Stable at high mass ratio
Cons	Unstable at high mass ratio	Unstable at high stiffness ratio

primal[4]



dual (ours)



MGPBD: Dual Space + Global Solver + AMG

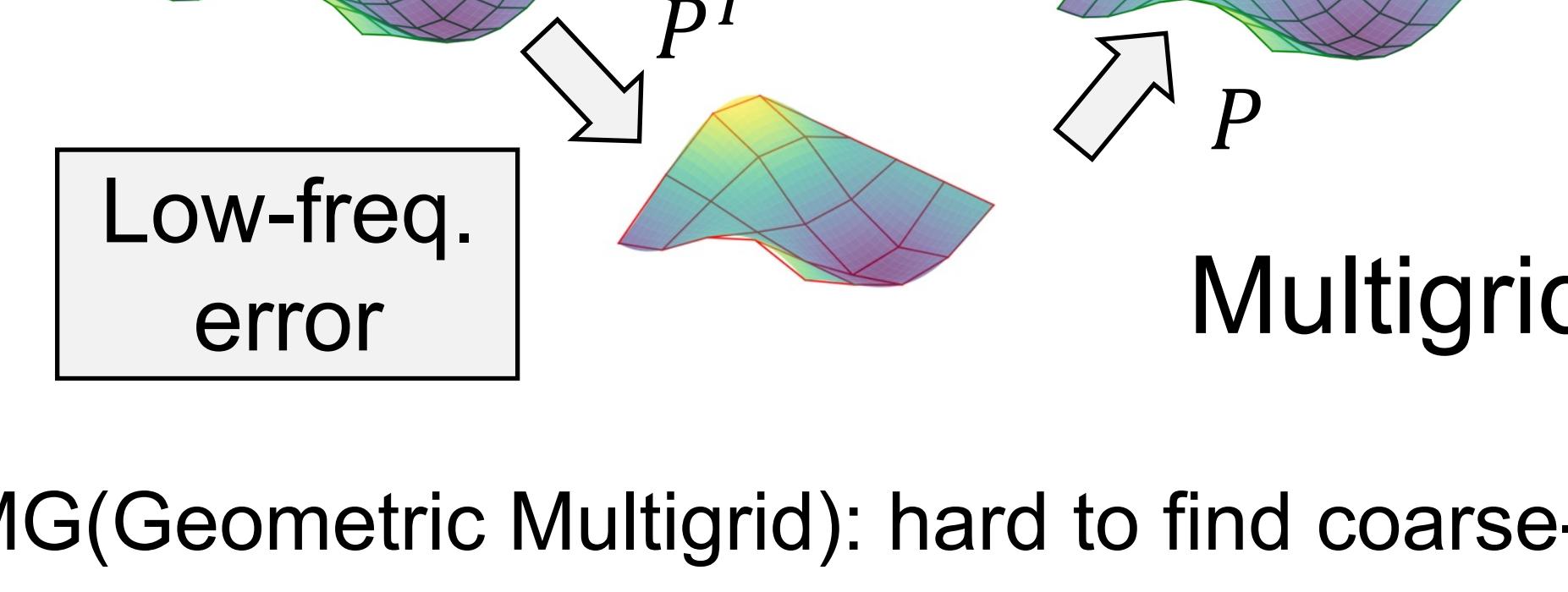
Global System: solve the full system with AMG

Lazy setup: reuse P between steps.

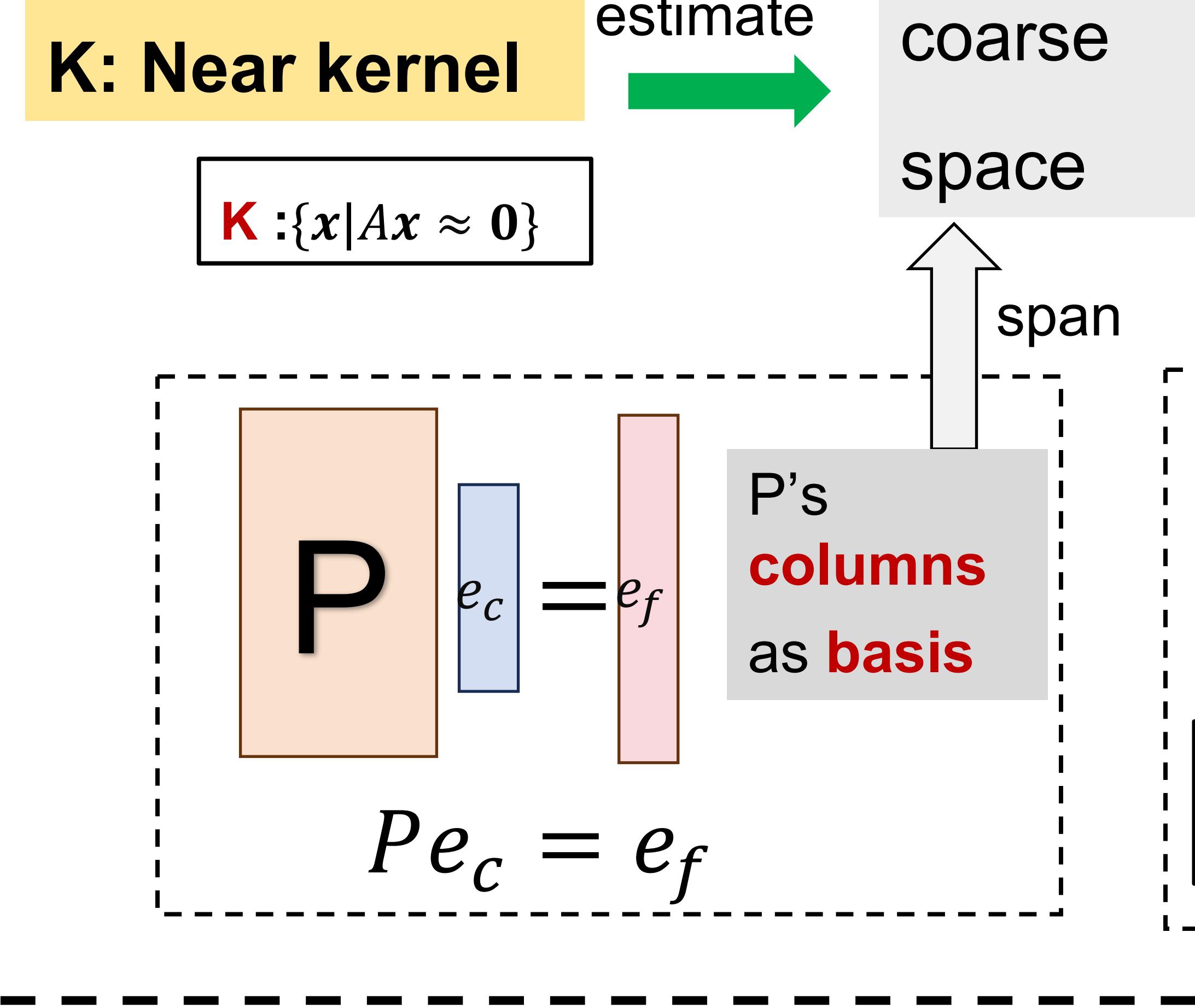
Use near kernel $K = \{x | Ax \approx 0\}$ to approximate the coarse space

Iterative method: Only eliminates high-frequency errors, hardly **low-frequency** ones.

Multigrid method: Transfer errors to coarse grids, where **low-frequency** errors become high-frequency.



$$A = GM^{-1}G^T + \alpha/\Delta t^2$$



2: L: The space **low-freq.** errors reside property
Goal

Heuristic rule of AMG
Space L: $Ax \approx 0$

sufficient smoothing $\Rightarrow Ax \approx 0$

Near Kernel: Doubled the convergence speed!

Lazy setup: minor convergence loss, save 2/3 of time!

Yes!

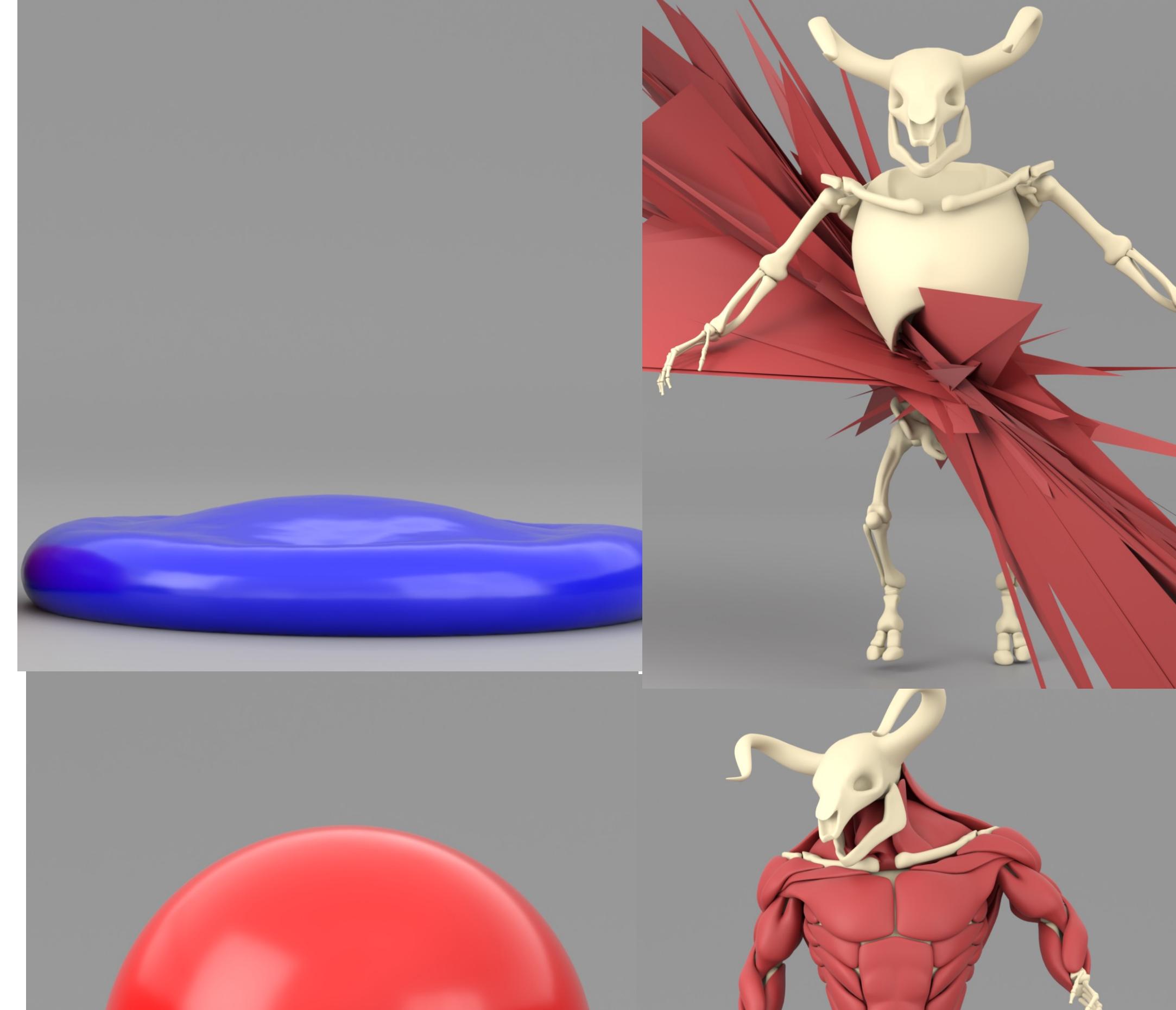
Algorithm 1 MGPBD Simulation Loop

```

1:  $\dot{x}, x, x_{old}, v \leftarrow \text{semiEuler}(v, \Delta t, f_{ext})$ 
2:  $\lambda \leftarrow (0, \dots, 0)^T$ 
3: for  $ite = 0, 1, \dots, maxIter$  do
4:   calculate C and  $\nabla C$ 
5:   assemble A  $\leftarrow \nabla C^{-1} \nabla C^T + \alpha$ 
6:   calculate b  $\leftarrow -C - \tilde{\alpha}\lambda$ 
7:   setup AMG for every few frames (e.g., 20).
8:   solve  $\Delta\lambda = b$  using MGCG solver
9:    $\Delta x \leftarrow M^{-1} \nabla C^T \Delta\lambda$ 
10:   $\lambda \leftarrow \lambda + \Delta\lambda$ 
11:   $x \leftarrow x + \omega \Delta x$ 
12:  if timeBudgetExhausted or  $\|b\| < \epsilon$  then
13:    break
14:  end if
15: end for
16: collision response
17:  $v \leftarrow (x - x_{old})/\Delta t$ 

```

Results & Limitations



XPBD

soft

Crash

Ours

Stiff

Stable

Time Step Size
10ms 20ms 30ms

XPBD

MGPBD

XPBD

MGPBD